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The three-dimensional shape of molecules can be described by appropriately 
chosen, formal molecular surfaces, such as electronic isodensity contours, 
molecular electrostatic isopotential contours, and similar functions. The 
characterization of the shape of such molecular surfaces, in particular, their 
changes along reaction paths, is of importance in several areas of theoretical 
and applied chemistry, biochemistry, and pharmacology. Molecular shapes 
are often represented in terms of cross-sections of such molecular surfaces, 
by appropriately chosen planes. Thus, the characterization of 3D shape is 
transformed into the 2D problem of characterizing a number of plane curves, 
the cross-sections. The problem is further simplified if these continuous curves 
are characterized using the methods of discrete mathematics, which are often 
more suitable for computer applications. In this work we formalize a number 
of possible approaches to provide a discrete characterization of molecular 
surface cross-sections. The method is graph-theoretical in nature and it allows 
one to provide a concise description of the curves, and their changes with 
the rearrangements in the nuclear configuration. The vertices of the graph are 
the inflexion points of  the cross-section and the edges are their mutual visibility 
relations. The procedure is easily programmable as an algorithm, permitting 
an automatic evaluation of the shape descriptors for a large number of 
cross-sections and molecules. This possibility is of importance with respect 
to molecular similarity studies of computer-assisted drug design. Several 
simple examples are chosen to illustrate the shape descriptors. The basic ideas 
are illustrated by detailed cross-sections of the electronic density for the 
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molecule of water, as functions of changes in bond angle and bond lengths. 
Molecular electrostatic maps for molecules of biochemical interest (nucleotide 
bases) are analyzed with respect to shape similarities. Finally, some of the 
notions are generalized to deal with cross-sections of surfaces of hard-sphere 
molecular models (the so-called van der Waals surfaces). 

Key words: Characterization of molecular shape - -  Molecular similarity - -  
Computer-assisted drug design - -  Topology and graph theory 

1. Introduction 

The shape of a molecule is recognized to play an important role in determining 
some of its characteristic physical and chemical properties. The study of molecular 
shape is of considerable interdisciplinary interest: shape characterization of 
molecules has become essential in computer-assisted drug design [1-3]. 

The concept of molecular shape is very different from the shape concept of 
macroscopic solid bodies, due to the fact that there exists no rigorously defined 
geometrical surface that encloses the entire molecule. At the peripheral regions 
of a molecule one finds a fuzzy electronic charge cloud, and even the nuclear 
positions are not precisely defined due to vibrational motion, and on a more 
fundamental level, due to quantum-mechanical uncertainty. Nevertheless, several, 
appropriately defined, formal molecule surfaces have been found to provide 
useful descriptors for certain physical properties. This constitutes a pragmatic 
approach, where one may define and characterize a different molecular surface 
depending on the property one is interested in. Constant molecular electrostatic 
potential contours [4-17], electronic isodensity surfaces [18-20], surfaces of 
hard-sphere molecular models (the so-called van der Waals surfaces [VDWSs]) 
[21-23], or superimposed surfaces representing interrelations of any two of the 
above surfaces [24], are among the possible choices. 

A full characterization of molecular surfaces is a continuum problem in 3-space. 
Several approaches have been proposed recently in the literature. Correlation 
coefficients for pairs of electron density functions [25-29] have been used to 
quantify similarity in pairs of molecules. In the case of VDWSs, a partial shape 
characterization can be given in terms of the solvent accessibility regions of the 
hard-sphere surface [23, 30-32], or in terms of the surface's fractal dimension 
[33-35]. A recent approach, converting the continuum problem of the shape of 
three-dimensional molecular surfaces into a discrete problem, is the so-called 
"shape group method" (SGM) [36-45]. This method is based on the representa- 
tion of the common geometrical features of a family (a continuum) of possible 
geometrical contour surfaces by a topological object, and on the computation of 
a number of topological invariants, the incidence relations and shape groups 
[26-29]. These shape groups are the homology groups of a hierarchy of truncated 
surfaces related to the molecular surfaces. The method has been used to study 
both isodensity and isopotential contours [36-39], as well as the influence of 
conformational changes on their shape [39, 40], van der Waals surfaces [40-43], 
and the mutual interpenetration of pairs of molecular surfaces [44, 45]. Some 
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comments on the description of shapes of molecular orbital surfaces can be found 
in [46]. 

Despite the recent developments in the study of molecular surfaces, a great part 
of the analysis currently reported in the literature is performed on cross-sections 
of surfaces. The three-dimensional entity is replaced by a number of (in principle, 
infinitely many) plane curves. As far as we know, no attempt has been made up 
till now to provide a concise and nonvisual (algorithmic) description of the 
cross-sections of molecular surfaces, by means comparable to the SGM employed 
with the surfaces themselves. The purpose of this note is to fill this gap. 

The basic idea is the assignment of a graph [47] to every plane curve. Graph- 
theoretical approaches to the description of molecular surfaces have recently been 
introduced in the literature [48-50]. These graphs are associated to a three- 
dimensional entity, such as the entire "body"  of the molecular electron distribu- 
tion, and they bear no relationship with the usual molecular graphs built from 
atoms and bonds within a molecule [See Refs. quoted in [48-50]]. The molecular 
surface graphs provide a simple, pictorial, yet nontrivial, representation of both 
ditierentiable [48] and non-differentiable [49] surfaces, whereas seeing graphs 
of closed contour surfaces [50] are applicable to both types of problems. In this 
work we follow a conceptually similar approach to describing the cross-sections 
of a molecular surface, where we take advantage of the special features of the 
2D problem. 

The graph we propose in this study for each cross-section curve can be character- 
ized by matrices, that contain the information on distances and visibility of 
selected points [50] as well as other specific properties from the curve. This 
approach provides a discrete description of the molecular surface cross-sections 
that can be easily stored and retrieved from a computer. By this procedure, 
essential information about the surface is represented by a number of matrices, 
providing an algorithmic tool for the shape comparison of different molecules. 
There exists another aspect worth mentioning. As it is known, the essential shape 
features of the cross-sections do not always change with the changes in nuclear 
conformations (see discussions in [39, 40]). Accordingly, the graph-theoretical 
characterization of the planar curves provides a tool for the analysis of the role 
of the configurational rearrangements in inducing essential changes in shape. 

In this note a family of cross-section graphs of the molecular surface is defined 
and constructed. Several illustrative applications are provided, using contours of 
electronic density and molecular electrostatic potentials. The extension to define 
similar graphs for the VDWSs is also briefly discussed. 

2. Graphs for cross-sections of molecular surfaces 

Consider a closed contour surface in 3-space 3~, not necessarily homeomorphic 
to a 2-sphere, obtained as a boundary of a level set F of a given molecular 
function f ( r ) ,  such as electronic charge density, where r c 3R. This contour surface 
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will be represented as G(a, K).  The level set and its boundary are given by 

F(a, K)  = {r ~ 3R'. f ( r )  >- a}, ( la)  

G(a, K)  = {re  3R: f ( r )  = a}, ( lb)  

where K is an element of  the reduced nuclear configuration space M, K ~ M 
[51]; K represesents an internal nuclear configuration. Note that the level set 
F(a, K)  is bounded, if the high function values are found near the nuclei. Let 
P be a plane in 3-space: 

P = P ( A , , A 2 , A 3 , A 4 ) = { r ~ 3 R : A 1 x + A 2 y + A 3 z = A 4 } ,  r = ( x , y , z ) .  (2) 

A cross-section c of  the surface G is then given as follows: 

c = G(a, K)  r~ P(A1, A2, A3, A4). (3) 

I f  the intersection (3) is not empty, then the set c will consist of  a number of 
closed planar curves, satisfying an equation of the form ~bc(r) = 0. The occurrence 
of a single point p as a cross-section, when P is a plane tangent to the surface 
G, can be seen as a degenerate closed curve. 

We shall characterize the curve ~bc(r) = 0 by means of a graph, that will be denoted 
by gn(a, K, P), where n stands for its number  of  vertices. 

Let u and v be a pair of  orthogonal axes spanning the generic plane P. Any point 
p in P can be represented by a pair (u, v). The location of this point p in 3-space 
in terms of  the triplet (x, y, z) can be determined knowing the equation of the 
plane. The cross-section is representable in plane P as a multi-valued function 
v = h(u). For any generic point Pi(P) belonging to the curve, Pi(P) = (ui, vi) c 
p c 3R, v~ = h (ui). Furthermore, by analogy with the (3 N - 6)- dimensional case 
of  curvature analysis of  reactive domains of  potential surfaces [51, 52] one can 
define for every point on the curve a local, orthogonal system of coordinates in 
terms of the tangent U and normal vector V to the curve at the point. The 
orientation of V is taken as that of  the negative gradient of  function fe(r)  at 
point p, if the level set F(a, K)  is bounded, and as that of  the gradient otherwise, 
where fp(r) is the restriction of function f ( r )  to plane P. The choice between the 
two possible orientations of  U has no significance concerning the final formulas 
of  the method proposed in this study. 

This system of axes is indicated as (U, V) [See Fig. 1 for an explanation]. The 
transformation between the two systems is obtained simply by rotation and 
translation: 

U= ( u - ui) cos Oi + ( v - vi) sin Oi, (4a) 

V = - ( u  - u~) sin 0i + (v - v,) cos Oi, (4b) 

where the angle 0~ is given by 

0~ = arc tan {h'(ug)}, h'(ui) = (dh/du)~ . . . .  ~. (5) 

In the new system of coordinates the function representing the cross-section is 
written as V = H ( U ) .  We use the notation h ' ,  h~ , . . ,  when referring to the 
derivatives in the coordinate frame for plane P, and H't:, H"v,.  �9 �9 is used for the 
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Fig. 1. Definition of a local system of 
coordinates for every point belonging --z... 
to the molecular surface cross-section, v' ""-... 
The drawing represents a generic plane 0 
P(A1, A2, A3, a4) 

U 

"~z. / h(u) 

%~ e ~  

.,"~ u' ~ )  ~ h(u) 

U 

derivatives in the local system of  coordinates  at the generic poin t  Pi- The construc- 
t ion and character izat ion of  the graph involve some of  these derivatives. A simple 
computa t ion  with Eqs. (4) leads to the fol lowing relations: 

H ~  = [h" cos 0 i - s i n  OJ/[h" sin 0~+ cos 0~], (6) 

H'b = h 'J(h" sin 0 i + c o s  O i )  3 ,  (7) 
tt! t It 2 �9 H ~  = [ h ,  (h ,  sin 0~ + cos 0i) - 3 (h , )  sm O~]/(h" sin 0i + cos 0~) 5. (8) 

At the point  p~ (origin of  the local system of  coordinates)  we have U = 0. I f  
h'(u  = ui) is finite one finds at this point: 

H 'v (0 )  = 0, (9a) 

H'b(O) = cos30~ h~(ui), (9b) 

Eq. (9a) follows f rom the very definition of  the local system of  coordinates  (that 
is, every point  p~ is a critical point  in its own local f rame) .  Equat ion  (9b) shows 
that  the inflexion points  in the coordinate  f rame of  P will remain  inflexion points  
within the local system. In  this par t icular  case, i.e. when  p~ is an inflexion point ,  
we find: 

h "  " (9c) H ~ ( 0 )  = c o s 4 0 i  u ~ u i J -  

When 1 / h '~ (u~) = 0, then the t rea tment  is slightly different, but  the same conclus ion 
remains  valid for  the inflexion points.  In this latter case one should notice that  
h and  H are related as follows: 

H ( U )  = u i -  h-a( U +  ui), (10) 

where  h-l(u)  represents  the inverse function. 

In  the fol lowing we shall assume that  r does not  contain straight line segments.  
The vertices of  the graph  g,(a, K, P), collected in the set V(g,),  are the local 
inflexion points  of  the cross-sect ion c: 

V(g,( a, K, P) ) = {p~ ~ P c 3a: H"(p,) = 0} 

={I11, V 2 , . . . ,  V,}, (11) 
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where H"(pi) stands for the second derivative within the local system at point 
Pi. It is evident that if the curve is closed, n will be either zero or an even positive 
number. The case n = 0 (i.e., no graph) corresponds to a convex curve ~bc(r)= 0. 

These vertices divide the cross-section into domains of different concavity. A 
section of the curve between the points Vj and Vj+I is concave if H " >  0 at the 
local system of every point of the section. On the other hand, if H" < 0 then the 
section will be convex. 

The ordering given to the vertices of the graph is arbitrary. In this work we use 
the following convention: The n vertices are numbered in order of occurrence 
when moving along the curve, so that the section between I11 and I12 is concave, 

In order to complete the construction of the graph we need to define its edges. 
This can be done by a number of possible neighbor relations among vertices. In 
this work we use the condition of "visibility between vertices", because it allows 
one to describe some shape features of the cross-section (in this case, an indication 
of the extent of its indentations). This visibility relation is defined as follows. Let 
c* be the union of c and the bounded subset of P it encloses, that is, 

c* = F( a, K) c~ P( A1, A2, A3, A4), (12a) 

if the level set F(a, K) is bounded, and 

c* = clos {FC(a, K)}c~ P(A1, A2, A3, A4), (12b) 

otherwise, where clos {FC(a, K)} is the closure of the complement FC(a, K) of 
F(a, K). 

Two vertices V~ and Vj (points in 3-space) are visible to each other if the straight 
line segment joining them is totally contained in c*. Formally, this is described 
by the relation "vis" given as: 

1, if: V=ceV~+(1-a)Vjcc*, Vac[O, 1] 
vis ( Vi, V~) = O, otherwise. (13) 

The relation of visibility is comparable to the one used in [50] to define the 
so-called "seeing graphs". 

The edges of the graph, collected in the set E(g,(a, K, P)), are given by the 
pairs (V~, Vj) satisfying the relation of visibility: 

E(g,(a, K, P)) = {(V~, V~): vis ((V~, V~))= 1}. (14) 

The graphs defined by Eqs. (11) and (14) will be termed a visibility graph for the 
inflexion points of the cross-section e. This graph can be characterized in several 
possible ways, for example, in terms of its visibility matrix, given as: 

v(g,) = (v0); v U =vis ((V,, Vj)). (15) 

The matrix v(g,) is symmetric and its diagonal elements are unity. In fact, the 
visibility matrix is the sum of the n-dimensional unit matrix and the adjacency 
matrix of the visibility graph g, (a, K, P). Using the convention for the numbering 
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of  vertices, if c is a single Jordan  curve, one obtains for the off-diagonal elements 
one posit ion removed f rom the diagonal:  

vi, i+ 1 = 0 ,  Vi+I,i+ 2 = 1, i = 1, 3, 5, �9 . . .  (16) 

Notice,  however,  that  proper ty  (16) does not necessarily hold if the cross-section 
is formed by several closed curves. 

The case o f  a convex curve is special, since no inflexion point  occurs on the 
cross-section. Nevertheless, the characterization can be formally extended to this 
case. We assign the matrix v = [0] as a formal visibility matrix to each convex 
cross-section. As a comparison,  notice that if a curve possesses a single inflexion 
point  (the curve must  extend to infinity) it will be represented by a visibility 
matrix v - - [ 1 ]  (an inflexion point  always sees itself). 

Changes  in the level set parameter  a, in the nuclear  configuration K, or a different 
choice of  an intersection plane P, will lead to variations in the shape o f  the 
cross-section e and its associated graph gn(a, K, P).  These differences may  corre- 
spond to the occurrence o f  d isappearance o f  vertices (changes in n), as well as 
to changes o f  their visibility (changes in the matrix elements vo). Changes  in the 
visibility matrix reveal changes in the extent o f  the concave indentat ions and 
convex protuberances.  

As an illustrative example o f  above ideas consider  the case depicted in Fig. 2. 
The closed curve c represents a cross-section for a funct ion f ( r ) .  It is unders tood  
that in this case F(a,  K )  is bounded ,  and one finds the high funct ion values 
within c*. The visibility is given in terms of  straight line segments lying within 
c*. The right half  of  the figure displays the result obtained for the graph. One 
notices, for  example,  the alternation in visibility o f  consecutive points (i.e., I11 
does not  see I12, I12 does see I13, and so forth). As the graph shows, the vertices 

v 6 
V 4 

V 1 

V 3 

v 6 v5 

Vl ~ VI43 

v 2 

c = G(a,K)n P ~ gn =gn (a,K,P) 
a b 

Fig. 2a, b. Example of construction of the visibility graph from a planar, closed curve, representing a 
cross-section of some generic molecular surface, a Cross-section; b visibility graph of inflexion points 
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labelled 1, 3, 4, and 6 each see three other vertices, whereas the vertex 2 sees 
four and vertex 5 only two vertices besides themselves. 

One can obtain a complementary characterization of the cross-sections in terms 
of the distances between vertices. This adds information related to the size of  
the molecular surface, not necessarily taken into account by the visibility matrix. 
One may combine both sets of information in the matrix D(g , ) :  

O(g,) = [(O(g,))o], (O(g~ = v,jll v i -  viii .  (17) 

This matrix has as elements the distances between vertices that see each other, 
and zeroes for vertex points that do not. 

There are many other possible variants of  the above method that may be useful 
in shape analysis. The matrix of  third derivatives at the local inflexion points (cf. 
Eq. (9c)) provides some additional information not present in the previous two 
matrices. The length of concave and convex segments along the cross-sections 
usually correlate with the extreme values of  the local second derivative for points 
lying between two consecutive vertices. These points with extreme values of  
second derivatives could be taken as the vertices of an alternative visibility graph 
description of the cross-section. By reversing the orientation of vector V, one 
obtains the exterior visibility graph of c. 

In the next section we confine ourselves to the simplest description of molecular 
surface cross-section by using the visibility matrix v. 

3. Applications of the method: electronic density and nuclear rearrangements 

As a first illustrative example we consider the graph-theoretical description of 
changes in shapes in molecular surface cross-sections induced by conformational 
rearrangements. 

The examples chosen are cross-sections of  the total electronic density of the 
molecule of water, across the molecular plane defined by the fixed nuclear 
positions. The total density was computed for every nuclear geometry at ab initio 
level using the program HONDO-7.0 of Dupuis and co-workers [53], with a 
DZP basis set, in particular, Dunning's (9s, 5p)/[3s, 2p] with polarization func- 
tions on both O and H. With this basis set the equilibrium OH bond length and 
HOH bond angle c~ are 0.944 A and 106.5 ~ respectively. In order to cover the 
most important differences in shape, the following cross-sections of  the electronic 
density have been computed: a = 0.2, 0.02, 0.002, and 0.001 e /bohr  3. 

Two types of geometry changes have been studied for the above contours. The 
first is the bending motion that conserves the C2v symmetry. In this case, the OH 
distances were kept at their equilibrium value, and the bond angle c~ was varied 
from 5 ~ to 180 ~ At c~ = 180 ~ the symmetry becomes D~h. 

The three outermost contours (a = 0.02, 0.002, and 0.001 e /bohr  3) shows a similar 
change in shape as described by the visibility matrices v (a, c~) of  the cross-section 



Cross-sections of molecular surfaces 341 

graphs.  F o u r  different matr ices  vs, s = 1, 2, 3, 4, occur  when changing  the b o n d  

angle a : 

f~ 1 1 10 
Vl= 1 1 - ~ v 2 = [ 0 ] ~ v 3 =  01 ~ v 4 = [ 0 ] "  (18) 

1 0 

The matr ices  vs are found  for  different angles for  the var ious  cross-sect ions:  
v(0.02, 5 ~ = v(0.002, 5 ~ = v(0.001, 5 ~ = vl; 
v(0.02, 35 ~ = v(0.002, 35 ~ = v(0.001, 35 ~ = v2; 
v(0.02, 65 ~ = v(0.002, 65 ~ = v(0.001, 65 ~ = v3; 
v(0.02, 105 ~ = v(0.002, 125 ~ = v(0.001,145 ~ = v 4 . 

Not ice  that  the first a p p e a r a n c e  o f  mat r ix  v4(~) ( =  v2(a)),  occurs at different  
values o f  c~ for  different  contours .  This difference is easi ly  unders tood .  Both v4 
and  v2 represent  convex curves,  and  the ou te rmos t  cross-sect ions  become  convex 
curves when the two hyd rogen  a toms are far  enough  from each other.  I f  the 
con tour  is fur ther  away  from the nuclei ,  then a smal le r  b o n d  angle  is needed  to 
make  the cross-sect ion convex.  
The innermos t  cross-sec t ion  (a  = 0.2) reveals  a much  r icher  s t ructure  when the 
b o n d  angle  changes.  F igure  3 shows a supe rpos i t ion  o f  these cross-sect ions  of  

the e lec t ronic  dens i ty  surface.  This figure a l lows one to apprec i a t e  the  role of  
the con fo rma t iona l  r ea r rangements  in reshap ing  the cross-sec t ion  curve. In this 
case a larger  number  o f  inf lexion points  are found  dur ing  the t r ans format ion .  
Fo r  very small  angles the two hydrogen  a toms  a lmost  col lapse ,  an un l ike ly  
s i tua t ion  which is r epresen ted  by a curve with two concave  and  two convex 
sect ions ( four  inf lexion points) .  On the o ther  hand ,  for  angles close to 180 ~ one 
finds an a r r angemen t  with four  convex and  four  concave  regions (eight  inf lexion 
points) .  The overal l  s i tua t ion  is desc r ibed  in Fig. 4, which  shows the var ious  
vis ibi l i ty  matr ices  found  dur ing  the scanning  o f  b o n d  angles.  The a p p r o x i m a t e  
b o n d  angle value  at which  a given graph  occurs  is given in paren theses .  

Fig. 3. Superimposed cross-sections of the 
electronic density contour a = 0.2 e/bohr 3 of 
water along a bending vibration with symmetry 
C2,,. The curves lie on the molecular plane; the 
oxygen atom is at the origin. A: 25~ B: 35~ 
C: 45~ D: 65~ E: 85~ F: 105~ G: 125~ 
H: 145~ I: 165~ J: 180 ~ 

II 12 
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1011 l 
01111 (5 ~ ) 
11101 
11o i j  

101111 1 
011111/ 
111011 l 
110111 | (45~ 
111110/ 
111101 

101101 7 

o11111 I 
111011 / (65 ~ ) 
II01101 
011110 I 
111001A 

i 
I01111 
011111 | 
111011 | 
110111 | (105 ~ ) 
111110 I 
111101J 

101111 
011111 
111011 
110111 
111110 
111101 
111111 
11111101 

T 
10111111 
01111111 
11101111 
11011111 
11111001 
11110110 
11110110 
11111001 

t 
F1o117 
101111 

" i111oi 
L11O1j 

(145") 

(125") 

(115 ~ ) 

Fig. 4. Visibility matrices for the 
graphs of the electronic density 
cross-section of water at a = 
0.2 e / b o h r  3, corresponding to the 
bending with symmetry C2~ 

Another interesting feature shown in Fig. 3 is the occurrence of an approximately 
circular region about the oxygen atom, which is not entered by the contour lines. 
This region seems to be almost completely unaffected by the conformational 
motion of  the two hydrogen atoms, and so it constitutes a property characteristic 
of the oxygen atom. This property provides a very attractive basis to construct a 
scale of  van der Waals radii from first principles [54]. 

Bendings of  an asymmetrically stretched molecule, leading from symmetry Cs to 
Co~ as o~ increases, have been compared with the previous results. In this case, 
the same scanning of  bond angles was performed, but one of  the OH bonds was 
stretched up to 1.40 A. The second bond length was kept at its equilibrium value. 
The results for the visibility matrices of various cross-sections considered are 
shown in Fig. 5. 

A most interesting case is the set of contours for the value a = 0.2 e/bohr 3. 
Similarly to the case of  symmetry C2v shown in Fig. 3, Fig. 6 displays a superim- 
posed view of  the corresponding curves. The outstanding feature is the occurrence 
of  a critical angle for which the single closed curve breaks up into two closed 
curves. One of  these curves is always convex, that shrinks as a increases, and 
finally disappears when the two hydrogen atoms are far enough from each other 
(corresponding to a bond angle slightly larger than 135~ The occurrence of the 
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FI00011 
F 1~ I ~ 
10111 ___~ 1o11o,0 
I,,1o IOLO1,O 
L11OI 11111'o 

L11OOOI 

A (5") (25") 

F IOIIO 
io111o 
111100 
111010 
LOOOOO 

(45") 

1011 
0111 1 
1110 / 

Ll lO1J 

(145") 

B 

,o,, l rlo111 
01111 --r110 ~ 1oi'11 1,,o, / '"o,  
11011 L1 ,O I j  

(5") (25*) (65") 

C 

1o111 F,o,,l  
o , , , , _ .  _ .  [ , o ] _ . i o , , , l  _ .  [ ,o] _ .  ,o, 
,,1o I o, o1 i,,1oi o1 
llo,J L11Ol_I 

(5~ (25*) (45*) (65*) (105 ~ ) (125") (180") 

llO,, F101,] 
0 , , , 1 - .  ~o, - -  [,o~] ~ , o , , , 1  -" ['o~]-" ,o, 
111o I I,,,oI 
,to,j L,1O,j 

D (5*) (25*) (65*) (105 ~ ) (125") (180") 

Fig. 5. Visibility matrices for the graphs of a number of electronic density cross-sections of water 
corresponding to a bending with symmetry Cs. The labels A, B, C and D stand for the level set 
constants a = 0.2, 0.02, 0.002 and 0.001 e/bohr 3, respectively 

two curves forming a cross-section is reflected in the visibility graph and its 
visibility matrix. The third matrix in the first line of Fig. 5 has a fifth row and a 
fifth column both containing only zeroes, corresponding to the separate, convex 
curve. Notice that the curve that does not disappear remains approximately 
constant during the motion of the hydrogen atom. These approximately coincident 
curves define a region of space that encloses an OH group, whose properties are 
mostly unaffected by the presence of the other atom. As mentioned earlier, this 
property has some promising consequences with regard to the determination of 
atomic van der Waals radii or transferable properties associated with chemical 

groups [54]. 

The examples shown in this section illustrate the application of the proposed 
method. It is noteworthy that the visibility properties of the graph allow one to 
recognize the occurrence of many of the essential changes in shape due to the 
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x 
D,E,F,G,H,I,J,K 

1 

' - ' ~  \ / Fig. 6. Superimposed cross-sections of 
the electronic density contour a = 
0.2 e/bohr 3 of water along a bending 
vibration with symmetry C S. The curves 
lie on the molecular plane; the oxygen 
atom is at the origin. Notice that on the 
right-hand side of the figure the 
contours labelled /9, E, F, G, H, /, J 
and K are hardly distinguishable from 
one another. Bond angles, A: 5~ B: 25~ 
C: 45~ D: 65~ E: 85~ F: 105~ G: 
125~ H: 135; 1: 145~ J: 165~ K: 180 ~ 

conformat ional  rearrangements.  This approach  may be also o f  interest to provide 
a discrete character izat ioon of  shape t ransformations in molecular  surfaces under- 
going chemical reactions. In this latter case the choice of  the planes to obtain 
the cross-sections can be decided based on the directions in which two or more 
reagents approach  one another.  

4. Further applications: molecular electrostatic potential maps 

Molecular  electrostatic potential  (MEP) maps provide a molecular  surface 
frequently used for the interpretation o f  biochemical  activity [4-17].  The shape 
o f  these M E P  surfaces (or the shape features o f  their relevant cross-sections) are 
o f  part icular  interest to rationalize similarities between compounds  and to detect 
the number  and type o f  reactive centers o f  a molecule [4-17, 55]. In  this section 
we provide a brief, illustrative analysis o f  the shape o f  these maps in terms of  
the formalism proposed  above. 

As an example,  we have considered the analysis of  the M E P  cross-sections for 
a family o f  compounds  o f  major  interest: the D N A  pyrimidine and purine basis, 
namely cytosine, uracil, adenine,  and guanine.  The MEP's  o f  these compounds  
have been obtained from the literature, and need not be recomputed  here. In our  
case we have made use of  the recent results computed  by Eisenstein [56]; the 
MEP ' s  are constructed f rom ab initio 4-31G atomic multipoles. The cross-sections 
studied are those within the plane containing the ring nuclei o f  the molecules. 
All the four  compounds  ment ioned above present both positive (proton repelling) 
and negative (proton attracting) regions o f  potential.  The cross-sections for all 
these regions of  M E P  appear  as one or more closed planar  curves. The zero 
contour,  on the other hand,  always contains at least one open curve, extending 
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to infinity. The cross-section visibility graphs can be built easily providing a 
discrete characterization for these MEP maps. 

Figure 7 shows schematically some typical cross-sections for cytosine. This 
provides an illustration of the overall pattern found or all the compounds,  and 
it is not intended to be complete or accurate. For cytosine, Table 1 provides a 
complete characterization of the cross-section in terms of the visibility matrices 
obtained from the results in [56]. For the contours with zero or negative MEP 
we quote the exterior visibility (reversing V ~ - V  in the local frame; cf. Sect. 2). 
Table 1 shows that the curves' features become more complicated when the MEP 
level set value a increases. This is a reasonable result, since for larger values of 
positive MEP the convex sections of the contour follow closely the position of 
the atoms. Accordingly, these cross-sections exhibit a different number  and 
different visibility interrelations of  inflexion points, when compared to the looser 
and more featureless cross-sections. 

Table 2 displays the results for the visibility matrices of the MEP contours 
corresponding to a values of  +4 and - 4  kcal /mol,  for cytosine, uracil, adenine, 
and guanine. The results in the table are easily interpreted. Let us consider, for 
example, the negative MEP contours (analyzed according to the exterior visibility 
graphs). For cyto'sine we find a 4 x 4 matrix with zeroes and ones, but with no 
rows or columns having only zeroes. This corresponds to a cross-section which 
is a single closed curve. For uracil and adenine we find visibility matrices involving 
only elements equal to one. This corresponds to the visibility of  a number  of 
closed curves, each one invoking inflexion points mutually visible. This can only 
take place if each curve contains two inflexion points and the contour function 
(MEP here) is such that F(a, K) is unbounded. One concludes then that uracil 
must possess two of such closed curves and adenine three of  them. The interior 
of any of such closed curves encloses one minimum of the electrostatic potential. 
Finally, guanine shows a column and a row of zeroes. This clearly indicates that 

Fig. 7. Schematic representation 
of  cross-sections of  MEP for 
cytosine along the molecular 
plane. The values indicated in the 
figure are in kcal/mol 

............................. , / . - - -Q 

',,,| 
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Table 1. Visibility matrices for several cross-sections of the molecular electrostatic potential 
of  cytosine (planar configuration). The exterior visibility graph is used for the zero and 
negative MEP contours 

MEP level set value Visibility matrix 
(kcal/mol) 

-64 

-32, -16, -8, - 4  

+4, +8, +16 

+32 

+64 

Ii 
1 1 0 1  
0 0 1 1  
1 1 1 1  
0 0 0 0  

1 1 0 1  
0 0 1 1  
1 1 1 1  
1 0 0 0  

" 1 0 1 0 1 0 1 1 1 1 1 1 1 1  
0 1 1 0 0 0 1 1 1 1 1 1 1 1  
1 1 1 0 0 0 0 0 0 1 1 1 1 1  
0 0 0 1 0 0 1 1 1 1 1 1 1 1  
1 0 0 0 1 0 1 0 1 1 1 1 1 1  

~ 0 0 0 0 0 1 1 0 1 1 1 1 1 1  
1 1 0 1 1 1 1 0 0 0 1 1 1 1  

i l 1 0 1 0 0 0 1 1 1 1 1 1 1  
! 1 1 0 1 1 1 0 1 1 0 1 1 1 1  
il 1 1 1 1 1 0 1 0 1 1 0 1 1  
' !  1 1 1 1 1 1 1 1 1 1 0 0 0  
, 1 1 1 1 1 1 1 1 0 0 1 1 0  

1 1 1 1 1 1 1 1 1 0 1 1 0  
~ 1 1 1 1 1 1 1 1 1 1 0 0 0  I 

" 1 0 1 0 1 0 1 1 1 1 1 1 1 1 "  
0 1 1 0 0 0 1 1 1 1 1 1 1 1  
1 1 1 0 0 0 0 0 0 1 1 1 1 1  
0 0 0 1 0 0 1 1 1 1 1 1 1 1  
1 0 0 0 1 0 1 0 1 1 1 1  l 1 
0 0 0 0 0 1 1 0 1 1 1 1 1 1  
1 1 0 1 1 1 1 0 0 0 1 1 1 1  
1 1 0 1 0 0 0 1 1 0 1 1 1 1  
1 1 0 1 1  l 0 1 1 0 0 1 1 1  
1 1 1 1 1 1 0 0 0 1  l 0 1 1  
1 1 1 1 1 1 1 1 0 1 1 0 0 0  
1 1 1 1 1 1 1 1 1 0 0 1 1 0  
1 1 1 1 1 1 1 1 1 1 0 1 1 0  
1 1 1 1 1 1 1 1 1 1 0 0 0 1  
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Table 2. Visibility matrices for cross-sections of molecular electrostatic potential of DNA pyrimidine 
and purine bases. The values of level sets for MEP, indicated in parentheses, are in kcal/mol. The 
exterior visibility graph is used for the negative MEP contours 

Molecule Visibility matrix Molecule Visibility matrix 
(a/kcal mo1-1) (a/kcal mo1-1) 

1 1 0 1 1 0  
Cytosine l i  1 1 0 1  Adenine 
(+4) 0 0 1 1  (+4) 

1 1 1 1  
1 0 0 0  

Cytosine 1 0  Adenine 
(-4) 01  (-4) 

01  

Uracil 

(+4) 

" 1 0 0 0 1 1 1 1 "  

0 1 1 0 1 1 1 1  

0 1 1 0 0 1 1 1  

0 0 0 1 1 0 1 0  

1 1 0 1 1 0 0 0  
1 1 1 0 0 1 1 0  
1 1 1 1 0 1 1 0  

1 1 1 0 0 0 0 1  

Uracil 11  

(-4) 11  

1 1  

" 1 0 0 0 0 0 0 0 0 1 1 1 "  
0 1 1 0 1 1 1 0 0 1 1 1  
0 1 1 0 1 1 1 0 0 1 1 1  

0 0 0 1 1 1 1 0 1 1 1 1  

0 1 1 1 1 0 0 0 1 1 1 1  
0 1 1 1 0 1 1 0 1  t 11  

0 1 1 1 0 1 1 0 1 1 1 0  

i 0 0 0 0 0 0 0 1  l 1 1 0  
0 0 0 1 1 1 1 1 1 0 0 0  
1 1 1 1 1 1 1 1 0 1 1 0  
1 1 1 1 1 1 1 1 0 1 1 0  
1 1 1 1 1 1 0 0 0 0 0 1  

111 , I 
1 1 1 1  

1 1 1 1  

1 1 1 1  
1 1 1 1  [i00001 Guanine 1 1 0 0  

(+4) 0 0 1 1  

1 0 1 1  

1 0 0 0  

1 0 0  
Guanine 0 1 1  

(-4) 0 1 1  

0 0 0  

the cross-section is formed by at least two closed curves, one of which is convex 
(no inflexion points present). 

The results for the level set of  MEP corresponding to +4 kcal /mol  show the 
occurrence of single closed curve. For all the four compounds we have followed 
the same convention to number  the inflexion points (interior visibility graphs are 
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used here). Furthermore, the vertex V1 was chosen to be the one closest to the 
zero electrostatic potential contour line. This consistency in the labeling of the 
points allows one to make meaningful shape comparisons. Observe, for example, 
that the first 4 x 4 block of the visibility matrices is the same for all the four 
compounds. This similarity extends to the first 5 x 5 block in the cas of adenine 
and cytosine. These coincidences suggest that, despite the presence of different 
atoms in the molecules, some general shape features of the cross-section remain 
much the same for these compounds. 

The above results may help the development of a prospective, automated analysis 
of molecular similarities using the discrete characterization of molecular surface 
cross-sections. Furthermore, it can be useful in developing a rigorous criterion 
to assess the shape complementarity of two sections of different molecular 
surfaces. The problem of complementarity between different molecular surfaces 
is of importance when describing drug-receptor interactions, or enzyme-substrate 
complexes, in general. In principle, two complementary sections of molecular 
surfaces should exhibit common blocks of their visibility matrices, when the exterior 
representation is adopted for viewing one of the molecules, and the interior 
representation for viewing the second one. 

5. Further comments  

In the preceding sections we have discussed and analyzed cross-sections of 
molecular surfaces that are differentiable everywhere. In this last section we make 
some comments with respect to possible generalizations of this approach. 

Analyzing cross-sections of hard-sphere surfaces (the so-called van-der-Waals- 
like surfaces) poses the problem that the curves will not be, in general, ditterenti- 
able everywhere. These surfaces are the envelope surfaces determined by the 
interpenetration of spheres. As a consequence, at some points no derivative exists, 
and the value of the second derivative in the local system, when it exists, will be 
always negative (convex sections). However, the method can be extended 
naturally to treat these systems, by means of a simple modification: the vertices 
of the graph are formed by all the points of the cross-section where the curve is not 
differentiable. The visibility among vertices, vis ((V~, Vj)), is defined as in the 
second section. The graph will be indicated by g'(a, K, P) to distinguish it from 
the previous types. Notice that each vertex in g',(a, K, P) can be viewed as a 
degenerate case where two vertices, limiting a concave section in a differentiable 
planar curve, approach one another and become coincident. 

The graph constructed according to the above rules possesses some properties 
differing from those of the original graph g,(a,  K, P). The occurrence of only 
convex neighborhoods (for the points where the cross-section is differentiable) 
implies that every vertex can always see its two closest neighbor vertices (at least 
when the cross-section is a single curve). That is, Eq. (16) will not hold in general 
for v(g'(a, K, P)). 
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Figure 8. Schematic representation of  
cross-sections of the van de( Waals 
surface of 1,2-dihydroxybenzene 
(catechol) in a planar configuration. 
A: plane - = 0  A; /3: plane z = 1.25 ~ ;  
C: plane z = 1.50 ~ ;  D: plane z =  
1.70 ,~ 

( 
A 

/ 

Figure 8 provides an illustrative example of  VDWS cross-sections. The example 
considered is a planar configuration of the molecule of  1,2-dihydroxybenzene 
(catechol). This configuration corresponds to a case with the two hydroxylic 
hydrogen atoms closest to each other (symmetry C2~); this is one of the local 
minima of the energy hypersurface. The molecule is built from atoms of different 
"sizes" and it has some interesting shape features. In our case the geometry was 
computed at the ab initio STO-3G level with the program GAUSSIAN 86 of 
Pople and co-workers. In order to construct the VDWS, the van der Waals atomic 
radii were taken from Ref. [57]. Some of the representative cross-sections appear  
in Fig. 8. The molecular plane coincides with the plane z = 0  (i.e., P =  
P(0, 0, 1, 0)); accordingly, the different cross-sections show an elevation map of 
the VDWS. The first contour line (z = 0) reveal the presence of all the atoms in 
the molecule. The second curve (z -- 1.20 ~.) has been chosen so that the hydrogen 
atoms (with a van der Waals radius of 1.17 ~,) are not seen. For the third and 
fourth contours (z = 1.50 and z = 1.70 .&, respectively) all the shape features are 
associated with the carbon atoms. Table 3 contains a concise representation of 
all the results obtained by displaying the visibility matrices of  the corresponding 
graphs. Notice that the off-diagonal elements closest to the diagonal are all 1 for 
the first three matrices, as commented above. On the other hand, the visibility 
matrix for the z = 1.70 contour has only zero elements, due to the fact that the 
cross-section is composed by 6 disjoint, closed convex curves. 

This characterization of hard-sphere surfaces is a straightforward extension of 
the characterization for smooth, differentiable molecular surfaces. The description 
is simple and allows one to represent some essential shape features of  the surface 
in a numerical nonvisual fashion. According to our proposal,  one can obtain a 
simple, numerical representation of a VDWS by calculating the visibility matrices 
of  a number  of its cross-sections. 
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